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Abstract

I/O performance is a bottleneck for many workloads. The
I/O scheduler plays an important role in it. It is typically
configured once by the administrator and there is no selection
that suits the system at every time. Every I/O scheduler has a
different behavior depending on the workload and the device.
We present a method to select automatically the most suitable
I/O scheduler for the ongoing workload. This selection is
done online, using a workload analysis method with small I/O
traces, finding common I/O patterns. Our dynamic mechanism
adapts automatically to one of the best schedulers, sometimes
achieving improvements on I/O performance for heteroge-
neous workloads beyond those of any fixed configuration
(up to 5%). This technique works with any application and
device type (RAID, HDD, SSD), as long as we have a
system parameter to tune. It does not need disk simulations or
hardware models, which are normally unavailable. We evaluate

it in different setups, and with different benchmarks.
Index Terms—automatic; 1/0 Scheduling; pattern matching;
optimization;

I. INTRODUCTION

The I/O path comprises a highly developed set of com-
ponents, to the very least composed by an application, file
cache, file system and an I/O scheduler (if we restrict ourselves
to the software part). The objective of this architecture is
arranging I/O operations in a better way for the underlying
storage device. Nonetheless, it is well known that workloads
have diverse behavior depending on the storage device [1]. No
uniformity can be assumed for a brand and model, not even
for a single disk, since aging [2] can produce different results
over time. I/O parameters need to change dynamically, even
if the workload does not, to maintain performance.

However, many of these I/O parameters either come pre-
configured with default values or are tuned only once in the
lifetime of a system. In many cases, the default values come
from analyses that took place on different setups and it is
assumed they will suit the majority.

We studied the I/O scheduler and found out it has a big
impact on I/O performance, more with multiple and indepen-
dent parallel applications, and there is certainly not a single
configuration that provides the best performance for every
workload nor hardware. A mainline Linux OS implements four
different schedulers, with slightly distinct targets: for example,
fairness or low latency, and they all underperform for some

workloads. The I/O scheduler is assigned statically on a per-
disk basis and is normally predefined by the Linux distribution.

On the CPU side, the additional transistors given by the
advance of the scale of integration are currently addressed
mainly to increase the number of cores in the chip. Perfor-
mance achieved by CPUs keeps getting higher, and so does
the number of CPUs in a system. A similar progression can be
found for disk capacity, but not for I/O performance. This per-
formance gap is widening with multicores, since the available
storage bandwidth must be shared among several cores. The
effects of this performance gap are typically reduced using
more storage devices in parallel (like RAID systems), which
leads to an increased performance in terms of the number of
operations per second (IOPS) and bandwidth.

This paper explores the new opportunity provided by mul-
ticores, to add smarter components to the I/O path. Under I/O
bound workloads, cores can stand idle during large periods of
time, and hence we can get better performance dedicating them
to tasks that will alleviate this bottleneck. Therefore, we are
proposing a workload analysis mechanism to tune an important
I/O parameter: the I/O scheduler. We can use techniques
like time-series analysis of I/O traces, to identify previous
patterns, unite them to a performance metric, and provide an
automatic way to select the best-performing /O scheduler for
the current workload. Patterns are created by the interaction
of simultaneous workloads, for example, multiple processes or
several Virtual Machines. Some of the samples seem random
at first sight, but in fact, they can still be compared and expose
a similar behavior to others. The technique we are proposing
can link a certain pattern to a performance value, and find if
one pattern matches another.

The proposed mechanism should not be used where fairness
or low latency is important, specifically real-time systems
should avoid using it. In order to link patterns and perfor-
mance, periodically, we check all different schedulers implying
potential inefficiencies for some intervals.

Although the evaluation is done on I/O bound applications,
our method runs in low priority threads being able to reduce
the impact on CPU bound applications.

In summary, we present the following contributions:

1) A novel method to compare I/O traces and extract behav-
ior patterns online, using an algorithm based on DTW
(Dynamic Time Warping [3], FastDTW variant [4]) in
multi-cores.

2) The proposal and evaluation of an automatic scheduler



selector implementation for Linux: /OAnalyzer.

3) The addition to IOAnalyzer of a simple dynamic prob-
ability guided scheduler selector for random workloads,
selecting an I/O scheduler when no pattern is detected.

The feasibility of this technique is demonstrated with an
evaluation in different setups. We use widely accepted industry
benchmarks like TPC-E [5] and TPC-H in a setup with HDD
technology. Additionally, we examine multiple workloads that
produce a near-random behavior to demonstrate we can obtain
good performance where no trivial manual setup is possible.
Finally, we evaluate our technique in four Virtual Machines
on a 16-SSD RAID-0 running a real application.

II. MOTIVATION

With our method, we assume that similar I/O patterns
will be repeated over time. Moreover, a certain pattern is
typically followed by another one. The mechanism to manage
the dynamic pattern probability chain is further explained in
Section III-A.

If we can predict this situation, we can try different system
parameters (in our case I/O schedulers). We will be able to
see (learn) the effects that those system parameters have over
the same I/O pattern. Once we have a set of learned values,
we can start choosing the most beneficial system parameter
for the current workload.

On the next subsections, we will show why clustering I/O
patterns is a valid idea and why the I/O scheduler is an
important system parameter to tune.

A. I/O Scheduler effects

The I/O scheduler selection affects the performance of
the system. Nowadays, Linux distributions implement four
different I/O schedulers: Completely Fair Scheduler (CFQ),
Deadline (DL), Anticipatory (AS) and No-Op (NOOP). The
default one is usually CFQ or DL. However, we claim no
scheduler performs well for every workload and device. In
Figure 1, we show two different workloads ' (row) with two
different hardware devices (column), both HDD technology 2.
Each bar is the execution time (normalized to the maximum)
when using a static I/O scheduler.

Figure 1 exposes three main ideas: i) looking at the first row
(different BENCH, same DISK) we see how the scheduler
performance is totally different. Selecting CFQ for BENCH
1 provides us with the best performance, but for BENCH 2
the situation changes and the best scheduler is NOOP. For
these workloads on DISK 1, a static selection would not be a
good choice. ii) Observing the second column (same BENCH,
different DISK) we also see how the best-performing scheduler
varies. With the default I/O scheduler selection, be it DL or
CFQ, one disk will work in an optimal way while the other
will not. iii) Finally, the loss on performance can be significant,
for example, at BENCH 1 / DISK 1 we can lose more than
an 80% of performance by choosing the wrong scheduler.

Iworkloads are detailed in Section IV-E as 8S and 5128
2DISK 1 is an 8 HDD RAID-0, and DISK 2 is a single HDD
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Figure 1. 1/O Scheduler comparison between two different benchmarks (row)
with two different hardware devices (column). Execution Time is normalized
for each test. Each color bar represents a I/O scheduler (NOOP, AS, DL,
CFQ).

It is worth mentioning that for SSD disks, NOOP scheduler
usually performs best. But, eventually a specific one will be
created (for example, [6], [7]), which will change this fact.
To summarize, I/O Scheduler should be adaptive and not fixed
as it is now.

B. I/O clustering inside known traces

Being able to identify or classify the workload is a difficult
task, we cannot use file names, applications or other high level
properties. The same application, with identic parameters and
files can generate different behavior due to its interaction with
other applications or files. Even if we isolate the applications,
internal fragmentation or disk aging can convert a simple
sequential read in something totally different.

Our methodology uses, mainly, traces obtained from the
kernel elevator. These traces include the I/O requests that will
be issued to the disks before entering the I/O scheduler. The
scheduler will order and merge them, but it is assumed that
a similar trace will produce the same result. For our task, we
are using Dynamic Time Warping (DTW) [3] (specifically the
FastDTW [4] implementation) to compare and get the edit
distance between two time-series. In our case, the I/O traces
are timeseries. The edit distance (Np) is the minimal number
of changes that need to be applied to a trace to convert it into
another one.

We have analyzed two traces, cello99 [8] and deasna [9].
The HP cello99 trace is taken from the cello server at HP labs
in January through December of 1999, is an I/O intensive
SCSI-controller-level trace. deasna is a trace taken from the
Division of Engineering and Applied Sciences at Harvard
from 16 October through 22 November of 2002. It is a NFS
trace, and includes all the request done to the server. We
applied our clustering identification method to see how this
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(a) HP cello 99 trace(1 week)
Figure 2.

kind of clustering works on those systems. The parameters
used for the clustering are as follows: the trace (we only
consider traces over 1 IOPS) is cut in 5 seconds pieces. We
accept them as similar (hit) if they have a 80% of similarity,
and we compare only traces with a difference of a 10% of
I/O operations between them. We create a new cluster if the
previous conditions are not met (miss). The parameters are the
same we are using in the real system.

On Figures 2a, 2b we show the number of new clusters
(not random) identified at the traces with a continuous (red)
line and the daily hit ratio with a dashed (black) line for one
week traces. Figure 2a is from a cello99 trace. New clusters
are found at the beginning of the trace, and they are used over
all the period (new clusters do not go higher than 150 and
identified clusters, hits, are over 11000 per day). Figure 2b
is from deasna (NFS). It has a similar behavior; We can find
daily values of 400 new clusters and 10000 hits, increasing hits
in last trace days. Missing clusters are from periods where no
more than one I/O operation per second is done, as they are
not analyzed.

To summarize, the I/O patterns found on the first days are
used over all the system life, therefore the learning period is
small and acceptable.

IIT. TOANALYZER

IOAnalyzer is a userspace utility that gathers traces and
statistics from different levels of the I/O stack. Traces are
compared using DTW, creating a set of clusters with associated
performance values from several I/O schedulers. IOAnalyzer
then selects the best scheduler (given a metric), for the
next probable workload based on historical pattern sequences.
IOAnalyzer is designed as a multithreaded low priority process
to use the extra cores that we may have idle in the machines
and it only runs when I/O is active.

In the next subsections, we will explain in detail all the
components of IOAnalyzer (Figure 3 shows a diagram): The
workload identification and prediction method, the trace re-
duction method, the instrumentation needed to achieve our
objective, the detailed workflow and finally the parameter
selection.

# new clusters
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(b) NFS trace (deasna, 1 week)

new clusters (red, solid line) and daily hit ratio (black, dashed line) for 5 seconds traces.
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Figure 3. IOAnalyzer and kernel diagram showing a simplified workflow of
a cluster match.

A. Workload identification and prediction

The original DTW is O(N?) (N is the size of the trace),
FastDTW provides an O(N) algorithm using a zoom-in re-
cursive process to reduce the matrix to analyze. We are using
this linear time multigrid approximation inside our work.

As our technique will be used at runtime, and we need to
predict the next workloads, we have to do the clustering more
dynamic. Once we have a match of a trace in a stored cluster,
we store the found cluster id on the preceding cluster. We
use this information to create a ranking of the most beneficial
schedulers for the next expected workloads. The ranking is
updated continuously to adapt to dynamic workloads. To create
this ranking, we define a depth of d clusters and create a
dynamic pattern probability chain.

B. Trace reduction

Trace reduction is an optional process. It limits the I/O
trace to a specific number of elements. Depending on the
target system or device (for example, big RAID system), I/O



traces can become very big. Storing them unmodified would
result in a huge trace database, increasing the processing time.
Reducing the trace moderates the size of the trace database and
lowers the CPU usage of the whole process.

Obviously, this reduction needs to maintain the behavior
of the original trace. n seconds I/O traces are reduced to x
elements or buckets. Each bucket will store the essential infor-
mation of n/x seconds. We extract the essential information
using the maximum and minimum sector jump of the period
(Asector) and randomly? select one of them.

C. Kernel instrumentation

Kernel instrumentation is needed to capture I/O operations.
We use debugfs/relayfs to get I/O traces before entering the
I/O scheduler. The code is added to elevator.c modifying
the kernel. The I/O traces mainly contain timestamp, sector
position, operation (write or read), block size and physi-
cal device. We can add an additional instrumentation level
at VES (read_write.c) to capture the number of IOPS and
bandwidth that the user is committing. We only need the
aggregated value for each sample and export it through /proc.
In userspace, inside the IOAnalyzer, we capture IOPS and
bandwidth metrics through the aforementioned interface. This
implementation can work in SSD units (16-SSD RAID-0),
with workloads up to 150K IOPS. We only had problems
with VES level instrumentation because we were logging
every request and aggregating in the analyzer. Therefore we
decided to change the implementation to the aggregated values
explained beforehand. On general, overhead is not appreciable
at tested levels.

D. IOAnalyzer detailed implementation

IOAnalyzer takes traces from the I/O elevator and compares
them with DTW using the previous stored clusters (stored
traces) and their performance information (for all schedulers,
if possible). If a hit is found, we try to guess the next 5-10
seconds of I/O using the created dynamic pattern probability
chain. Then we select and change the I/O scheduler. If we
have a miss, we store the new cluster and the performance
obtained for the actual scheduler in the trace database (this is
part of the learning process). In every case, we store in the
preceding cluster a pointer to the new found cluster to continue
updating the dynamic pattern probability chain. The next part
of this subsection describes in detail the implementation.

We have a thread, Tsystem, getting the values from debugfs
into the user space as Trace,. We also need to classify them
per device. Two additional threads, Tpeyice and Tyser, We
also capture the performance (P) in IOPS and bandwidth per
second (at system level and user level) obtained at ¢ with the
actual scheduler (s) as Pj.

In Thrqin, main process, every t period we get those traces
(T'race,) and start reducing them with the algorithm explained
at Subsection III-B, this new trace, reduced, is called CInfo,

3We inspected several alternative methods (for example, always selecting
the maximum jump), but they did not keep as close to the original trace as
the proposed method.

(now cluster). C'Info, is compared using FastDTW in the n
cores of the system, in low priority, with all CInfo € stored
that have a similar (£10%) number of IOPS. dif f, = mini-
mum ( DTW (CInfo,, CInfo € stored) ) is found. Finally,
ClInfo, and CInfo, is selected as similar if they have a sim-
ilar number of IOPS and the 1.0 — dif f,/maxdif ference*
is higher than a certain value. Our selected value is 0.8, 1.0
means that the clusters need to be 100% equal. In any case,
we select always the cluster with minor differences, so this
value has effect only on the learning phase when new clusters
are being created.

If CInfo, and CInfo, are similar we increase the hit
count of the detected cluster (C'Info,) and store P inside
it (we hold the last 20 values for each scheduler, to be able
to detect changes in performance and overcome a possible
overtraining). If they are not, we add a new cluster with the
ClInfo, and P; in the stored set.

Once we have a hit, we select the best scheduler that
will improve the requested metric for the next expected
clusters. The selection is done using information about the
most probable following clusters (Section III-A) of the system
starting from the detected one. If we do not have enough
information about the schedulers of a cluster we try to select
one of the remaining untested schedulers. There is a remaining
issue, random patterns. A random pattern is detected by our
algorithm when we have a miss. In that case, we use a
technique called Armed-bandit [10] where the scheduler is
selected based on a dynamic probability (for example, NOOP
80%, DL 10%, CFQ 5% and AS 5%). This probability is
updated to select more times the schedulers with the better
performance while still giving a chance to the other ones
to detect environment changes. In this phase, our priority is
keeping a good performance during this unknown period. As
we will see in Section V, it delivers better results than a static
I/O scheduler selection without any cost.

E. General parameter selection

Dynamic probability chain depth d is selectable, but a value
of 2 for five seconds traces is enough; it means we are
predicting the next 10 seconds. Increasing this value introduces
fewer changes in the scheduler, and would make them less
responsively. Reducing the value would reduce the prediction
capabilities expecting that the next cluster would be similar to
the current one. We are using 2 as standard.

The bucket size x is also selectable. We are using 1000 ele-
ments for five seconds traces as standard for our evaluation. In
order to test the correctness of this reduction, we analyzed the
cello99 traces with and without this feature. We could identify
97% of the clusters for one week trace with the full traces.
Enabling the trace reduction, we identify 96% of the clusters.
An identification is a hit on the traces’ database. Increasing
the number of elements increases the hit ratio while decreasing
the number of different clusters, but it also increases memory

“maxdifference is continuously increased as we cannot know the max
difference between clusters of a system. The effect on the first running stages
(where we do not know how the system is) is low.



and CPU usage of the matching algorithm. CPU cost (extracted
from the evaluation tests, where it uses from 1-2% of CPU) is
quadratic respect to the size of the bucket following the next
equation: 2.008 x 10~7 x BucketSize? + 8.621 x 10~* x
BucketSize + 0.25, memory cost is (BucketSize x 8B +
20 * numschedulers x 4B) x numClusters Bytes.

The I/O analyzer process is executed each ¢ seconds, we
are using 5 seconds as standard. Less time will increase CPU
consumption each ¢ seconds but we will get a faster scheduler
selection boost. Longer periods increase the time needed to
test all the schedulers and reduces the benefits as it it more
difficult to find a cluster match.

Compared to the IOAnalyzer overhead, a bad scheduler
selection could produce a bigger increase on the application
execution time. However our mechanism uses low priority
threads to not affect CPU bound workloads. One of the most
common problems of learning techniques is overfitting (not
observed in the evaluation). Anyway, to mantain the system
controllable, we have a mechanism to limit the number of
clusters (6000 in our evaluation) in the database and remove
the old ones (following an LRU algorithm).

Finally, the selection of the values used on our evaluation
(traces of five seconds, similarity of 0.8, size of the reduced
clusters) has been found experimentaly. Further analysis of
more parameters combinations are left out of the paper, as they
are related to the available CPU power of the target machine
and the expected I/O load.

IV. EVALUATION

In this section, we will evaluate our mechanism with dif-
ferent tests in different setups. We will show the results for
each scheduler (in an unmodified Linux system) and then the
results for our dynamic method.

Our main environment uses a Intel Core 2 Quad CPU Q9300
with 4 GB and a standard SATA drive ST31500341AS. The
operating system is a Linux Ubuntu 10.04.1 LTS with a 2.6.32
kernel, without modifications (only the minimal to extract I/O
traces). We are targeting bandwidth on the system side (in the
elevator) as metric to improve. For subsection IV-D we are
using a different machine, an HP ProLiant DL380 G6 Special
Rack Server, with 36 GB of memory, 8 cores and a LSI 9260-
161 with 16 SDD in RAID-0 to run 4 Virtual Machines and a
real application.

Each of the evaluations is done starting with a clean system,
i.e., not trained. Page cache is also cleaned. Results are gath-
ered when they are stable, this is when they do not go down
the second best scheduler. In the worst case (2LKR+2HD,
Section I'V-C) this happens on the 15th iteration (10 hours) of
the test. In TPC-E (Section IV-A), on the contrary, in the 5th
iteration (less than one hour), the results are steady.

A. Industry Benchmarks - TPC-E - Highly predictable work-
load

This test uses a TPC-E [5] database simulating an
eBay/Amazon site. The parameters are the next: 4000 clients,
80 trade days, scale factor 500 receiving the load from 10

clients in 1000 seconds. The test has a ramp up time of 100
seconds. Database is running on MySQL 5.1.41. Figure 4a
shows the improvement (%) on transactions per second (TPC-
E metric) over the NOOP scheduler when using different
schedulers (DL, AS, and CFQ) and with our method (DYN).
Boxes represent the median, first and third quartiles, and the
maximum and minimum value with whiskers. CFQ is the best
scheduler in this case, with a performance over an 18% better
than NOOP, which is the worst one for this test. Neverthe-
less, the results obtained with our dynamic implementation
are better than those of CFQ (near 2.5%). As we have an
heterogeneous workload, dynamically adapting the scheduler
used in different phases can improve performance beyond any
fixed configuration.

B. Industry Benchmarks - TPC-H with parallel queries

The second test is a TPC-H [5] 10Gb database (over
MySQL 5.1.41) running a set of queries’ in parallel (queries 1,
3,5,6,7,11, 12 and 19). TPC-H simulates a Decision Support
System or Business Intelligence database environment.

In Figure 4b we have the time obtained with the four static
schedulers and with the dynamic method. In this case, the best
scheduler (DL) is different from that of the previous TPC-
E test (CFQ, the second worse in TPC-H). We can make
two separate groups of schedulers with a big difference in
performance between them, AS and CFQ as the worse ones,
and NOOP and DL as the most suitable for the TPC-H test.
Finally, we can observe how the dynamic method is able to
obtain a performance between those two best schedulers.

A more detailed analysis of the bandwidth obtained by
every pure scheduler shows that the schedulers receiving more
bandwidth are not always the better ones on this test, TPC-H is
affected by the page cache. This effect is produced by the page
cache pollution and trashing, pages useful for the next queries
are removed sooner due to the workload. The page cache can
impact greatly the results observed by the user (25.74%). This
effect is also observed in [11]. In Section V we will propose a
solution for this kind of workloads that can improve the results
with our dynamic scheduler.

C. Apparently random workload from multiple sequential ap-
plications

In this third test, we will try an apparently random workload.
We are using two components: LKR (Linux Kernel Read)
and HD (Hexdump). LKR reads the kernel source files. Each
instance of the LKR test traverses the kernel source tree six
times. Each of them from a different directory to avoid the
cache (device buffer and page cache). The second component,
HD, is reading sequentially from a set of files of 1 GB each.
An instance of HD reads four randomly selected files of this
set. Finally, the test consists on running two instances of LKR
and two instances of HD in parallel.

As LKR and HD are running in parallel (In an isolated
environment, one LKR runs in 184 seconds, one HD process

5The subset of queries is selected based on the running time in the tested
machine to have a 1 hour test



o
o
o1
=z
= |
2 T
i w
o
R —T—

5-

0 -

o A CcFQ DYN-BANDWIDTH
(a) TPC-E : scheduler improvement wrt. NOOP.

- ==

& 2600~
o
: ==
£
240-
200- I
El
:;:I
o NOOP A f6:0) DYN-BANDWIDTH

(c) 2 LKR+2 HD

30-
0W-
C)
E 280 |
E
- —J
240
20-
s @Q NOOP o DYN -BANDWIDTH
(b) TPC-H
80000 -
60000 -
o
Q
o
I}
S 40000 -
[
20000 -
0-
AS cFQ

NOOP DL  DYN-BANDWIDTH

(d) Tariff Advisor, QCOW2(filled)/RAW (white) image format

Figure 4. Effect over different workloads of a I/O scheduler selection (static - dynamic).

in 850 seconds), the requests to the disk are apparently
randomized. This test, using a fixed policy, gets the minimum
time using CFQ. However, the execution time can be improved
by nearly a 3% if we apply our dynamic scheduler. Figure 4c
has the results for each scheduler. Our dynamic scheduler
can get execution times near the best selectable scheduler,
CFQ, that was the second worst in the previous TPC-H test.
Moreover, DL, the best of that test, is the worst in this one.
Nevertheless, we decrease the best time and as a side effect,
reduce the variability of the test.

D. 16-SSD RAID-0 with 4 Virtual Machines running a real
application

The real application for this test is Tariff Advisor [12] from
Neurocom. It is an application based on a fast rating/re-rating
engine for telecom operators that is trying to compute and
analyze what would be the revenue generated by costumers
if they bought a different tariff. It can perform rating and re-
rating of call data, for various domains, such as mobile, fixed,
and VoIP telecommunications. It has already been deployed
to major telecom operators in Greece and other countries.
We run 4 Virtual Machines images of 80 Gb, using two
different image formats: QCOW2 [13] and RAW. QCOW2
implements copy-on-write and is an image used mainly to
static VMs, RAW is an image format representing a real hard
disk. We selected this two image formats as we detected that

they have a different behaviour under SSD. RAW offers the
best performance (twice than QCOW?2) and it should be used
normally. In Figure 4d we can find the results obtained with
the static schedulers and with IOAnalyzer. Results are the
accumulated reports per second, the metric that the application
uses, over all the VMs. We can see, how in the QCOW?2 image
format test, 3 static schedulers obtain best performance than
AS. RAW image format has a totally different behaviour (with
the same application and data sets). We can see how in RAW
we have DL, the best scheduler in QCOW?2, as the third one
in performance. However, IOAnalyzer is able to obtain more
performance in QCOW?2 and stay closer the first and second
best scheduler in RAW.

E. Adaptability - Running different workloads in a row

Our last test shows the results obtained from running a set of
benchmarks continuously, without stopping IOAnalyzer. Our
objective is to demonstrate that IOAnalyzer adapts the 1/O
scheduler to the changes in the workload (not only inside the
same test) and does not suffer from overfitting. We run the
following tests with 4 and 8 processes: 8S and 5128, they read
4KB and jump 8 KB or 512 KB, respectively, of a 2GB file.
These tests use a different 2GB file for each process and the
page cache is cleaned every time. Finally, between the 4 and 8
processes tests, we run the TPC-H benchmark. Figure 5 shows
the five consecutive tests and their normalized execution times
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median) using the dynamic scheduler. Executions times for each individual
test are normalized to the worst one. One HDD used (ST31500341AS).

(per test) for each pure scheduler. For every test but TPC-H the
best scheduler is AS or CFQ. For TPC-H the best one is DL
as we have seen in Section I'V-B. Finally, we have a horizontal
bar with the result for our dynamic method. Our proposal is
closer to the best scheduler in every case. Moreover, we do
not have a performance impact due to the change of workload.

V. IMPROVEMENTS
Training

One of the main concerns with this kind of techniques is
the learning period, in this subsection we will show how our
method can achieve good results with few iterations. We will
use the LKR+HD workload from Section IV-C, as it is one of
the most random workloads that we have evaluated, and we
will see how the training converges fast to optimal values. On
the other hand, once the clusters are found (by continuously
running IOAnalyzer) they can be used on other workloads.

In Figure 6 we have the previous result from all the pure
schedulers, the RANDOM result using only the Armed-Bandit
method (Section III-D) and finally, the results of using our
dynamic method in different iterations: 0-9, 15-25 and 30-
40 (The results improve each iteration, but we plotted those
ranges to simplify). We get close to the best scheduler in
approximately 15 test iterations (= 10 hours). Finally, on more
standard workloads, stabilization happens sooner and most of
the clusters will be learned beforehand (=~ 1 hour with TPC-
E), as it is designed to be continuously running. Being in
the learning period, does not mean that the performance will
be worse than the worst scheduler. Typically, performance in
the learning phase is around the mean of all the involved
schedulers.

Finally, the Armed-Bandit method obtains good results
without CPU-usage and traces gathering. This happens be-
cause we do not force to try the schedulers that are worse
than others as our priority is keeping a good performance
during this unknown period. On the other hand, we still
need to try sometimes the other schedulers to detect changes
in the workload, choosing eventually a bad scheduler for a
short period. If we combine this armed-bandit method with
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Figure 6. 2 LKR+2 HD execution times with static schedulers and with
dynamic changing schedulers. Pure random with dynamic probability, and
dynamic selection using several training iterations.

our dynamic method, when we detect a known cluster (no
random), we start again selecting the best scheduler. We
get a performance boost for that case, which is better than
using Armed bandit during all the workload. However, this
armed-bandit technique by itself is simple enough to be a
candidate to include it as a user-level application in any
Linux distribution. Using the random technique along with the
cluster identification surpasses the performance of the previous
technique in 15 test iterations (Figure 6).

Extending IOAnalyzer with Application metrics

As we introduced earlier, TPC-H test uses the page cache
intensively as many queries request the same data. This
means that the best scheduler, not always increases application
performance due to trashing. For this case, we can extend the
captured metrics to include application level indicators and
try to optimize them. In TPC-H, as the problem was that page
cache pollution reduced performance, we tested this extension
adding the concept of page cache HITS as a metric. We
composed a new metric using two already available ones, user
side bandwidth minus system bandwidth and tried to optimize
it. However, direct performance indicators extracted from the
application, if available, could be applied here to drive the
scheduler switches. System administrators could also define
their own metrics and target them from our method. With
this modification, the performance obtained was near the DL
values (Figure 4b) (with similar stability).

VI. RELATED WORK

There have been different approaches to automatically select
an /O scheduler. First, we can find a similar technique using
machine learning [14]. The paper reviews different methods
(from random selection with feedback to machine learning)
and provides results using IOMeter [15] synthetic workloads
and real ones. However, the workload is stored and compared
using simple characteristics like its proportion of reads and
writes, average request size or sequential/random ratio, which
can be not enough to describe some workloads. For example,



their mechanism could not differentiate a pure random work-
load from an inverse sequential one and change the scheduler
if there is any benefit to do it. Our proposal maps all the
disk requests on a 2D space (time and position), detecting
those cases where similar quantitative values are different
workloads. Another related mechanism [16] monitors latency
and bandwidth. This paper tries to change between deadline
and CFQ I/O schedulers to optimize one of those metrics. Our
method, on the contrary, is not limited to a subset of schedulers
(any old or future ones); we test every present scheduler.
Also we allow any metric to be selected as optimization
target. However, the proposed method [16] could be applied
to a real-time system. Our approach is limited to non-critical
systems because of the learning periods. Methods using online
simulation as [17] need to build the disk simulator (virtual
disk) and modify the I/O schedulers. They do not need learning
periods, but their capabilities are reduced as device complexity
increases. Qur method will still work unmodified with any
future scheduler created for SSD disks (for example, [6], [7])
or any new device (simple or complex). Also slightly related,
C-Miner [18] and DiskSeen [11] look for block correlations
and sequences using them for data prefetching. Their proposal
can be used in complement with our mechanism as they
focus on a different component of the I/O stack. In fact,
data prefetching can be faster if the correct I/O scheduler is
selected. Our method can work with any proposal targetting
higher layers (over the 1/O scheduler) like prefetching.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that different I/O schedulers result in
different performance levels for an application and system,
and that there is not an optimal one. We have then proposed
a mechanism to detect and compare workload patterns, which
we relate to I/O performance with the different schedulers.
With that information we constructed IOAnalyzer, a tool to
automatically select the best I/O scheduler for the detected
workload. The evaluation demonstrates our method always
yields the best or near best performance for any workload.
Moreover, often, we can get better performance than any
fixed scheduler for a wide selection of tests (heterogeneous
workloads). A key point of this proposal is that it will work
on any kind of hardware (SSD, HDD) or organization (RAID,
NAS, etc.). It is a safe choice by the system administrator even
if the workload is not clear at the point of configuration. This
implementation is working in Linux with a modified kernel.
Alternatively, we have a naive random approach, which can be
easily implemented as it does not need kernel instrumentation,
and still will give a better (Figure 6), more adaptive perfor-
mance to the I/O scheduler than leaving it fixed for many
workloads. Future work goes in several directions, mainly
adapting the computing power dedicated to I/O with respect to
the system load. This will be done using a separate scheduling
class which will restrict our analysis to those periods with idle
CPUs and not interfere with the CPU intensive workloads.
I/O path improvements are targeted to I/O bound applications,
but typically we will find different phases in an application.

Additionally, we can also off-load these tasks or part of them
to the GPUs [19] and reduce the CPU usage. A second
action is to deeply investigate the metric to optimize. The
presented work uses IOPS and bandwidth; other systems
may need to optimize, for example, fairness, even application
metrics can be used. Finally, each I/O scheduler has a big
number of parameters, and they can affect performance. This
might be specially interesting when using IOAnalyzer with
virtualization ( [20]). However, expanding the parameter space,
increases the time to test every possible combination.
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